Small area estimation using skew normal models

نویسندگان

  • V. R. S. Ferraz
  • Fernando A. S. Moura
چکیده

Valmária Rocha da Silva ∗ Fernando Antônio da Silva Moura † Abstract The main aim of this work is to propose two important connected extensions of the Fay and Heriot (1979) area level small area estimation model that might be of practical and theoretical interests. The first extension allows for the sampling error to be non-symmetrically distributed. This is important for the case that the sample sizes in the areas are not large enough to rely on the Central Limit Theorem. We deal with this by assuming that the sample error is skew-normal distributed. The second extension proposes to jointly model the direct survey estimator and its respective variance estimator. Proceeding in this way, we manage to take into account all sources of uncertainties. We applied our proposed model to a real data set and compare with the usual Fay-Heriot model under the assumptions of the unknown sampling variance. We also carried out a simulation study to evaluate frequentist properties of our proposed model. As it expected, our evaluation studies show that our proposed model are more efficient for producing small are prediction under skew data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Small Area Estimation of Complex Parameters Under Unit-level Models with Skew-Normal Errors

Complex parameters, such as poverty indicators, are usually difficult to predict in small area estimation (SAE). Elbers et al. (2003) have proposed an empirical semi-parametric method for dealing with poverty indices in SAE. This method, commonly called the ELL method, consists of drawing from the empirical residuals to reconstitute the entire census. After simulating the census, any complex pa...

متن کامل

An Application of Linear Model in Small Area Estimationof Orange production in Fars province

Methods for small area estimation have been received great attention in recent years due to growing demand for reliable small area estimation that are needed in development planings, allocation of government funds and marking business decisions. The key question in small area estimation is how to obtain reliable estimations when sample size is small. When only a few observations(or even no o...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Some New Developments in Small Area Estimation

Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012